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Abstract

A sharp interface technique is employed to study the interaction of a solid–liquid interface in a solidifying binary alloy with a ceramic
particle in the melt. The application targeted is solidification of a metal–matrix composite. A level-set based sharp interface numerical
method is used to study the directional solidification process in the presence of the particle. The transport of solute and heat are com-
puted. The directional solidification calculations are first validated against stability theory. The Mullins–Sekerka stability spectrum is
reproduced with good agreement with the theory. The interaction of the cellular interface with a ceramic particle in the melt is then com-
puted. It is shown that, in contrast to the case of a pure material, the ratio of thermal conductivity of the particle to the melt plays no role
in determining the front morphology and the result of the particle–front interaction. The diffusion of species controls the evolution of the
phase front around the particle. The implications of the results for particle–front interactions in a binary alloy are discussed.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Solidification front and particle interaction is very
important to applications such as metal–matrix composites
(MMCs) processing. Experiments show [1–3] that a particle
that is approached by a (planar) solidification front can
react in one of the following ways: (1) it may be pushed
along with the moving front, (2) it may be engulfed in
the front instantaneously, or (3) it may be pushed followed
by engulfment. There are different theoretical models,
mainly in pure melts, that purport to predict which one
of the above three scenarios will occur. An overview of
the experimental and theoretical work on front–particle
interactions can be found in Asthana and Tewari [1] (see
also [2,3]).

Most of the theoretical work on front–particle interac-
tion has focused on the rather idealized, even contrived sit-
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uation of the approach of a planar solidification front in a
pure material towards a ceramic particle suspended in the
melt. Furthermore, in these studies the front solidifies
towards the particle at a controlled rate, by means of a
directional solidification process. However, in actual cast-
ing processes of interest to MMC processing such idealized
conditions are unlikely to be met. More realistic scenar-
ios include solidification in the presence of pure under-
cooled melts or directionally solidified impure materials.
In these situations, typically, the solidification front that
approaches a particle assumes morphologies that are com-
plex in shape, such as dendritic or cellular structures. The-
oretical work on non-planar fronts interacting with
particles has been lacking. Recently, Yang et al. [4] have
computed the interaction of a non-planar solidification
front with an embedded ceramic particle. They have shown
that during dendrite–particle interactions, the particles will
eventually be engulfed by the side branches, a mechanism
that will lead to particles being segregated at grain bound-
aries in the final solid, rather than being located within the

mailto:ush@icaen.uiowa.edu


O 

Y 

L FI 

Perturbed interface

Stretched mesh region Fine mesh region 

Particle 

Fig. 1. Computational domain set up showing region of fine and coarse
mesh, and initial front and particle positions. In simulations OY, OF and
OL were varied depending on the perturbation wavelength chosen and the
resolution provided by the mesh in each case.
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grain. This form of particle inclusion in the solidified
microstructure has been termed entrapment [5]. In a pure
material, for both planar [6,7] and non-planar [4] morphol-
ogies, it has been shown that the particle-to-melt thermal
conductivity ratio significantly influences the formation of
the final shape of the dendrites and the composite micro-
structure. In this paper, we extend the study of Yang
et al. [4] to examine the effect of solute transport during
the solidification of a binary alloy on the interaction of a
solid–liquid front with a ceramic particle placed ahead of
it.

The basic ideas and quantitative details of the instability
of solid–liquid interfaces, both for pure as well as alloy
materials, are well established under well-defined growth
conditions. In particular, the growth of crystals in under-
cooled pure melts and pattern selection during directional
solidification of dilute binary alloys have been addressed
in a quantitative way and are now part of classical pattern
selection theory [8,9]. By performing linear stability analy-
sis, Mullins and Sekerka [10] first proposed a stability
criterion for a planar interface during directional solidifica-
tion of a binary alloy. Following the Mullins–Sekerka anal-
ysis, several approaches have been employed to model and
numerically simulate the directional solidification process
in alloy melts [11–13]. Recently, Echebarria et al. [14],
using a modified phase-field method with realistic parame-
ters, showed that the Mullins–Sekerka stability spectrum
can be captured successfully [14]. In order to achieve this
result using the diffuse interface phase-field approach, Ech-
ebarria et al. [14] ensured that the phase-field model was
cast in a form that balances the computational time and
accuracy constraints. In the phase-field approach this is
typically achieved by specifying the interface thickness
parameter that produces the correct solutions in the
sharp-interface limit while still maintaining reasonable
computational times. An alternate way in which to com-
pute the interfacial behavior in the directional solidification
context is to use a sharp-interface representation. Some
early work using boundary-fitted finite element methods
was performed by Derby and Brown [15,16]. However, in
recent years the phase-field model has been used more
extensively than the sharp-interface approaches [17–20] to
study alloy solidification at the micro-scale. Exceptions
are the work by Udaykumar et al. [4,17,18] where a
finite-difference fixed grid approach has been employed
and that by Zhao et al. [19] who have used a finite element
approach on fixed grids to compute the dendritic solidifica-
tion phenomena. In this sharp-interface framework, no
additional modeling aspects are involved beyond the con-
ventional continuum transport equations and sharp inter-
face jump and balance conditions. The current paper, as
an extension of previous work [4,17] shows that by utilizing
a level-set based sharp interface method, the Mullins–
Sekerka stability spectrum during directional solidification
can be reproduced accurately in a straightforward way.
The method also enables simulation of the interactions of
the cells grown from binary alloys under directional solid-
ification settings with solid particles embedded in the melt.
In this setting the temperature field has to be calculated
(instead of supplied using the frozen temperature approxi-
mation) because the presence of the particle in front of the
solidification interface distorts the thermal field around it.
The methodology is outlined in Section 2, the numerical
results are presented in Section 3 followed by a brief discus-
sion in Section 4.

2. Formulation and computational approach

2.1. Governing equations

The computational setup adopted in the calculations is
shown in Fig. 1. In order to save computational time, the
domain is divided into two sub-domains: a fine mesh sub-
domain OF and a stretched mesh sub-domain FL. In
the fine mesh sub-domain, initially a solid seed crystal is
placed at the left of the domain as illustrated in the fig-
ure. A small-amplitude sinusoidal perturbation of a speci-
fied wavelength is imposed at the center of the interface.
To study front–particle interactions, a circular particle is
embedded in the melt ahead of the front. The initial posi-
tion of the solidification front is far enough away from
the particle that the thermal and species fields are initially
unhindered by the particle.

The thermal transport is solved using:

oT
ot
¼ aL=S=Pr2T ð1Þ

The aL/S/P are the thermal diffusion coefficients of the liquid
(L), solid (S) and particle (P), respectively. T denotes the
temperature. For the present directional solidification pro-
cess, the latent heat release at the solidification boundary is
ignored in the calculations, i.e. it is assumed to diffuse
much more rapidly than the rejected species and hence its
transport is neglected as a significant effect. This affords
the simplification that the heat flux balance condition ap-
plies at the solid–liquid interface is:
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where KS/L are the thermal conductivities of the solid and
liquid, respectively. Note that if the condition in Eq. (2)
is not assumed to apply, the Stefan condition must be sat-
isfied at the interface in addition to Eq. (5). This renders
the solution of the combined heat and solute transport
equations rather stiff due to the disparate time scales of
transport of latent heat and segregated species. In the cur-
rent directional solidification setting, however, due to the
large sensible heat transfer compared to the latent heat re-
leased at the interface, i.e. due to the typically large Stefan
number, Eq. (2) is a reasonable assumption.

The heat flux balance condition at the particle–melt
interface is:

KL

oT
on

� �
L

¼ KP

oT
on

� �
P

ð3Þ

where KP is the thermal conductivity of the particle.
The solute transport equation is solved in each phase:

oc
ot
¼ DL=S=Pr2c ð4Þ

The DL/S/P are the solutal diffusion coefficients inside the li-
quid, solid and the particle, respectively, and c is the species
concentration. The solute conservation equation at the
solid–liquid interface is:

cL;intð1� kÞV N ¼ DS

oc
on

� �
S

� DL

oc
on

� �
L

ð5Þ

In the above, cL,int is the species concentration at the solid–
liquid interface in the liquid, VN the interface velocity, and
k is partition coefficient so that:

cS;int ¼ kcL;int ð6Þ

where cS,int is the species concentration at the solid–liquid
interface in the solid. Since the species diffusion coefficient
in the solid is usually orders of magnitude smaller than that
in liquid and the first term of the right-hand side of Eq. (5)
is typically small.

The interface temperature is related to the interface spe-
cies concentration via the phase-diagram and is given by:

T int ¼ T m � jmjcL;int � Cð1� 15e cosð4h� uÞÞj ð7Þ

where Tint is the temperature at the interface, Tm the melt-
ing temperature of the pure solvent, m the liquidus slope,
C ¼ cT m

L is the Gibbs–Thomson capillary coefficient, c is
the surface tension, and L is the latent heat of fusion per
unit volume, j the interface curvature, e the anisotropy
strength, h the angle between the interface and the x-axis,
/ the seed crystal orientation. The crystal is assumed to
possess fourfold symmetry.

There is no species flux across the particle interface, i.e.:

oc
on

� �
P

¼ 0 ð8Þ
The non-dimensional variables are defined as follows:

c� ¼ c� c0
L

c0
Lð1� kÞ ; H� ¼ T � T m

GDL=V p

; x� ¼ x
DL=V p

;

t� ¼ t

DL=V 2
p

; V �N ¼
V N

V p

; j� ¼ j
V p=DL

ð9Þ

In the above, the terms in the denominator are the scales of
the respective quantities used to normalize the dimensional
quantities. G is the thermal gradient, Vp the pulling velocity
and the equilibrium concentration of the liquid at T0 is:

c0
L ¼

T m � T 0

jmj ð10Þ

where T0 is the interface temperature corresponding to the
interface species concentration c1/k, c1 is the bulk concen-
tration in the liquid and is also the steady state solid com-
position. The concentration in the solid phase at the
interface is obtained from Eq. (6).

The non-dimensional equations then are:

oH�

ot�
¼ aS=L=P

DL

r2H� ð11Þ

oc�

ot�
¼ DL=S=P

DL

r2c� ð12Þ

1þ ð1� kÞc�L
� �

V �N ¼
DS

DL

oc�

on�

� �
S

� oc�

on�

� �
L

ð13Þ
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on�

� �
S

¼ oH�

on�

� �
L

ð14Þ

KL

KP

oH�

on�

� �
L

¼ oH�

on�

� �
P

ð15Þ

oc�

on�

� �
P

¼ 0 ð16Þ

c�L;int ¼ N� UX�Wj� ð17Þ

where

N ¼ � 1

1� k
; U ¼ GDL

jmjc0
LV pð1� kÞ ;

X ¼ H�int; and W ¼ Cð1� 15e cosð4h� uÞÞV p

jmjc0
LDLð1� kÞ ð18Þ

The above symbols represent, respectively, dimensionless
bulk concentration, temperature gradient, interface tem-
perature and capillary supercooling. The steady state spe-
cies concentration field is used as the initial condition, so
that in the solid:

c ¼ c0
Lk or c� ¼ �1 ð19Þ

While in the liquid, the initial condition is:

c ¼ c0
Lk þ ðc0

L � c0
LkÞ exp � V px

DL

� �
or

c� ¼ �1þ expð�V �pðx� � R�ÞÞ ð20Þ

where R* is the initial solidification interface location.
The frozen temperature approximation: To validate the

current method, the computed results are first compared
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against the Mullins–Sekerka instability theory. To perform
such an analysis, instead of using a heat conduction equa-
tion to calculate the temperature field, the frozen tempera-
ture approximation is adopted, as is done by Echebarria
et al. [14]. This assumption is typically applied in direc-
tional solidification experiments due to the high Lewis
number (Le = a/D) and the small sample thicknesses rela-
tive to sample length. For a solidification front advancing
along the x-direction (see Fig. 1), the temperature any-
where in the field can then be calculated using the frozen
temperature approximation as:

T ¼ T 0 þ Gðx� V ptÞ ð21Þ

Eq. (7) then becomes:

cL;int=c0
L ¼ 1� ð1� kÞd0j� ð1� kÞðx� V ptÞ=lT ð22Þ

where

d0 ¼
C

DT 0

ð23Þ

is a capillary length, DT 0 ¼ jmjð1� kÞc0
L the freezing range,

and

lT ¼
jmjð1� kÞc0

L

G
ð24Þ

the thermal length scale.
Now Eq. (22) can be employed to compute the interface

species composition. The interface velocity can then be
obtained using Eq. (13).

Using the same non-dimensional variables defined in
Eq. (9), the non-dimensional equation set in the case of
the frozen temperature approximation stays the same
except that the parameters in Eq. (17) become:

N ¼ 0;X ¼ x� � V �Nt� ð25Þ

The other two parameters U and W in Eq. (17) are the
same as defined in Eq. (18).

Mullins–Sekerka instability growth rate: To compute the
response of the interface to disturbances, a perturbation is
applied to the interface in the form dsin (xy � p/2) where d
is the amplitude of the perturbation and x is the wavenum-
ber. Mullins–Sekerka instability theory [10] predicts that
the growth rate of the perturbation will be:
v ¼
_d
d
¼ V x �2T MCx2½x� � ðV =DÞp� � ð10 þ 1Þ½x� � ðV =DÞp� þ 2mGc½x� � ðV =DÞ�f g

ð10 � 1Þ½x� � ðV =DÞp� þ 2xmGc

ð26Þ
In the above, in the interest of brevity the symbols
1 ¼ ½2KL=ðKS þ KLÞ�G and 10 ¼ ½2KS=ðKS þ KLÞ� have
been employed, KS, KL are the thermal conductivity
of the solid and liquid, respectively, p = 1 � k,

x� ¼ ðV =2DÞþ ½ðV =2DÞ2þx2�1=2 and mGc ¼�ðV =DÞmc1�
½ð1� kÞ=k�. In the present case of frozen temperature
approximation, the temperature gradients in the liquid
and the solid are the same, so that B0 = B = G. The simpli-
fied equation then reads:

v ¼
_d
d

¼ V �T MCx2½x� � ðV =DÞp� � G½x� � ðV =DÞp� þ mGc½x� � ðV =DÞ�f g
mGc

ð27Þ

This equation is used to predict the perturbation growth
rate for directional solidification without anisotropy at
the interface. With anisotropy, the Gibbs–Thomson coeffi-
cient becomes Cð1� 15e cosð4h� uÞÞ in the cases studied,
where e is the anisotropy strength.
2.2. Computational technique

The computational approach is described in detail in
[17]. A narrow-band level-set [21] is used to represent the
embedded interface, i.e. the solidification front. The gov-
erning equations are discretized using the techniques
described in [17]. Briefly, a second-order accurate finite-dif-
ference scheme is employed to discretize the governing
equations. The equations are solved on a fixed Cartesian
grid and the embedded interfaces (the solid–liquid interface
and the particle-liquid interface) are treated as sharp enti-
ties that move through the fixed mesh. The presence of
the interface is accounted for by using the level-set field
to redefine the discretization stencil at computational
points that straddle the interface. This simplifies immensely
the task of developing a sharp-interface methodology for
complex interfaces. The methodology has been carefully
benchmarked [17] and the dendrites computed have been
shown to match very well with theoretical predictions of
tip characteristics from solvability theory.
2.3. Interfacial conditions

There are two interfaces, i.e. the solidification front and
the particle–melt interface, where balance conditions must
be applied. The heat flux balance condition, Eq. (15), is
used to calculate the particle interfacial temperature. The
gradients in Eq. (15) are expressed in discrete form using
the normal probe technique [4], and the gradient on the
liquid side can be written as:

oH�

on�

� �
L

¼ 2H�L1 �
1

2
H�L2 �

3

2
H�int ð28Þ

where H�L1 and H�L2 are the temperature values at the first
and second probe point in liquid, respectively. These probe
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points are obtained in the direction normal to the interface
and placed at distances of Dx from the interface, as illus-
trated in Fig. 2. The point at the interface is denoted by
N in Fig. 2. Using the level-set field information its location
is given by:

~xN ¼~xi;j �~ni;jð/lÞi;j ð29Þ

where~ni;j is the unit normal from the point (i, j) to the inter-
face, and ð/lÞi;j is the level-set value at the point (i, j). The
locations of the probe points in liquid and particle phases
can be calculated using the following:

~xL1 ¼~xN þ~nN dxL1 ð30aÞ
~xL2 ¼~xN þ~nN dxL2 ð30bÞ
~xP1 ¼~xN �~nN dxP1 ð30cÞ
~xP2 ¼~xN �~nN dxP2 ð30dÞ

Bilinear interpolation is performed from the surrounding
mesh points to obtain the value of the variable H at points
~xL1;~xL2;~xP1;~xP2. The unit normal vector at N,~nN is also ob-
tained by bilinear interpolation from the surrounding mesh
points [4]. The distance from probe points to interface is:
dxL1 ¼ dxP1 ¼ Dx and dxL2 ¼ dxP2 ¼ 2Dx. (The tempera-
ture gradient at the solid–liquid interface oH

on

� �
S=L

in Eq.
(14) can be obtained in a similar way.) Thus, the resulting
interfacial temperature is then computed from:

H�int ¼
4ðKLH�L1 � KPH

�
P1Þ � ðKLH�L2 � KPH

�
P2Þ

3ðKL � KPÞ
ð31Þ

where H�P1 and H�P2 are the temperature values at the first
and second probe point in the particle, respectively.
Fig. 2. Method for evaluating the normal gradients at the interface. The
point on the interface is designated N and the probe points are shown in
the liquid (L1 and L2) and solid phases (S1 and S2).
When the solidification front approaches close to the
solid particle the two normal probe points required to
extract gradient information in Eq. (28) may no longer
lie in the liquid phase. Therefore, when contact between
the solidification front and the particle is imminent special
treatment is needed to update the motion of the solidifica-
tion front. In the current framework, using the level-set
information, it is a simple matter to detect when this type
of situation arises. For example, once the probe point loca-
tions are determined (Eqs. (30a) and (30b)) for the solidifi-
cation front on the liquid side, the value of the level-set
defining the particle is computed at that point (using a
bilinear interpolation) from the surrounding grid points.
If the level-set value (for the particle) at that point happens
to be negative then that probe point lies inside the particle
and therefore is not available for computation of the gradi-
ent in Eq. (28). When only the second probe point P2 lies
inside the particle but P1 lies in the liquid, then as demon-
strated in Fig. 3a, the gradient is obtained using only one
probe point in the liquid phase. This leads to a 1st order
estimate for the gradient. In this case, only two points,
i.e. the first probe P1 and interface point N are available
for calculation of the temperature gradient. As the gap
between the dendrite and the particle narrows and the first
probe point P1 is also inside the particle, then contact is
considered to have occurred, i.e. the gap between the front
and particle is less than one grid spacing. Thus, the first
probe point is now placed on the point M2 (Fig. 3b) which
lies on the particle surface and the two interface points N
and M2 are used to obtain the normal gradient of the tem-
perature. The particle interface point M2 is located at:
Fig. 3. The case of approach of a solidification front towards a particle.
Determination of gradients of temperature/species when: (a) the second
probe point is in a different phase, (b) the first probe point is in a different
phase, and (c) amplified view of the box from (b).



Table 1
Parameters for the binary succinonitrile (SCN)–acetone alloy system of
Ref. [22] and Al–Cu alloy system from Ref. [21] used in the directional
solidification simulations

Material properties SCN–acetone Al–Cu

jmjc1 (shift in melting
temperature)

2 K 7.8 K

DL (species diffusion coefficient) 1000 lm2/s 3000 lm2/s
C (Gibbs–Thomson coefficient) 6.48 � 10�2 K lm 2.4 � 10�1 K lm
Vp (pulling speed) 32 lm/s 3000 lm/s
G (thermal gradient) 1.4 � 10�2 K/lm 0.56 K/lm
d0 (capillary length) 1.3 � 10�2 lm 5 � 10�3 lm
lT (thermal length) 3.33 � 102 lm 3.42 � 104 lm
lD (species diffusion length) 60 lm 60 lm
k (partition coefficient) 0.3 0.14
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~xM2 ¼~xN þ~nN dxNM2 ð32Þ

where the distance dxNM2 is given by:

dxNM2 ¼
ð/PÞN
cos �x

ð33Þ

where ð/PÞN is the value of the distance function corre-
sponding to the particle surface computed at the point N,
i.e. the distance jM1Nj as illustrated in Fig. 3b, and �x,
the angle \M1NM2 as illustrated in Fig. 3b, is given by:

�x ¼ ATAN ABS
ðnyÞP
ðnxÞP

� ðnyÞF
ðnxÞF

� 	
 �
ð34Þ

In Eq. (34) ðny=xÞP is the y/x component of the normal to
the particle surface (i.e. computed from the level-set field
defining the particle surface) computed at the solid–liquid
interface point N. Similarly ðny=xÞF is the y/x component
of the normal to the solidification front computed at point
N. In general, due to the curvature of the particle surface
the point M2 will not lie exactly on the particle surface.
Therefore the closest point on the particle surface, denoted
M3 in Fig. 3c is identified and the temperature at that point
is chosen as the particle surface temperature. This point
M3 can be easily located (see illustration in Fig. 3c) using
the following equation:

~xM3 ¼~xM2 þ~nM2ð/PÞM2 ð35Þ

where ~nM2 is the normal at point M2 with respect to the
particle interface.

The value of the temperature at the point M3 is obtained
from the heat flux balance at the particle surface. This is
described below.

The solid–liquid interface is taken to be in perfect ther-
mal contact in the situation illustrated in Fig. 3b. There-
fore, when the gap between the phase boundary and the
particle is less than a grid spacing the temperature at point
N is taken to be equal to that at the point M3. Then, the
following conditions are satisfied:

HN ¼ HM3 ð36Þ

and heat flux balance:

kP

oH
on

� �
P

¼ kS

oH
on

� �
S

ð37Þ

In discrete form the above equation is:

kP 2HP1 �
1

2
HP2 �

3

2
HM3

� �

¼ kS 2HS1 �
1

2
HS2 �

3

2
HN

� �
ð38Þ

Using Eqs. (36) and (38):

HN ¼ HM3 ¼
4ðkSHS1 � kPHP1Þ � ðkSHS2 � kPHP2Þ

3ðkS � kPÞ
ð39Þ

Here the values of temperature in the particle and solid, i.e.
HP1, HP2 and HS1, HS2, respectively, are again computed
using bilinear interpolation from the surrounding grid
points.

The zero-flux condition, i.e. Eq. (16) is applied on the
species concentration in the melt at the particle surface.
The discretization of the species balance condition follows
essentially along the lines of the temperature gradient cal-
culations described above.

At the solid–liquid interface, the interface temperature is
obtained based on the assumption that latent heat release
can be neglected. This implies that Eq. (14) applies for
the interface temperature, which can be treated in a manner
similar to that for Eq. (15), which is described above. Eq.
(13) is used to calculate the species composition in the
liquid phase and the solid phase species composition is
computed using Eq. (6).
3. Results

3.1. Material 1: succonitrile–acetone

In the first set of cases, the commonly employed model
material, succinonitrile (SCN)–acetone binary alloy, was
used as the material to be solidified. Computations of the
solidification process were carried out with imposed small
perturbations on the interface to generate the Mullins–
Sekerka stability spectrum. The values of pulling speed,
imposed temperature gradient and other parameters are
given in Table 1. The computational domain is shown in
Fig. 1 (there is no particle in the present case). A fine mesh
was adopted in the shaded region O < x < F in Fig. 1, and
a stretched mesh was used in region F < x < L. The mesh
spacing in the fine mesh region was determined by perform-
ing a mesh refinement study and based on previous analy-
ses [17] of mesh density requirements to achieve grid
independence. I is the solidification front location. A per-
turbation was imposed onto the solid–liquid interface at
the beginning as illustrated in Fig. 1. In the simulations,
the perturbation amplitude was such that it lay within a
mesh cell. The subsequent growth of this perturbation
was followed to determine the growth rate. Seven different
wavenumbers were used to reproduce the Mullins–Sekerka



Table 2
Computed results for the Mullins–Sekerka stability spectrum where d0 = 1.3 � 10�2 lm, l = 2D/Vp, g the wave number, gl the dimensionless wave
number, and v the growth rate

g (10�3d0) 2.513 5.027 7.854 10.47 12.57 15.71 17.95
gl 12.083 24.166 37.760 50.346 60.415 75.517 86.307
vl2/2D (e = 0) 10.935 20.025 27.68 31.004 29.576 20.683 4.703
vl2/2D (e = 0.007) 10.935 20.295 28.365 32.680 32.190 25.495 12.563
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stability spectrum. The wavenumbers chosen are given in
Table 2.

Before the Mullins–Sekerka stability spectrum was
reproduced a mesh independence study was carried out.
The highest wave number among the seven wave numbers
was chosen for the convergence study, since it is the most
unstable situation that is encountered in the simulations.
If a mesh is fine enough to adequately resolve the highest
wave number case, it may be expected to be fine enough
for the other cases as well. In this case the wave number
g = 1.795 � 10�2d0 and the non-dimensional wave number
gl = 86.307; the perturbation amplitude d = 0.0039 lm,
which in non-dimensional terms is d* = 0.0003. The (non-
dimensional) mesh sizes chosen were Dx = 0.002, 0.003,
0.005, 0.01. The imposed initial perturbation is only a small
fraction of a mesh spacing in amplitude. As described in
previous work [4] the time step sizes are chosen to corre-
spond to a CFL-type criterion based on the maximum
interface velocity and therefore the computational times
vary depending on the problem. In each case, the typical
computational times for the development of the full
instabilities, i.e. into the deeply nonlinear regime, required
computational (CPU) times of the order of a few hours.
The y-direction domain length is OY = 18, which corre-
sponds to half of a wave length. The results for the conver-
gence study are presented in Fig. 4. The mesh size
convergence study above shows that for a mesh size
0.004 0.008

11.5

12

12.5

Δx 

χl2/2D

Fig. 4. Computed results for the non-dimensional perturbation growth
rate against mesh size. Convergence with grid refinement is observed as the
mesh size decreases.
Dx = 0.005, the result is already very close to the
Dx = 0.002 result. The fact that the results from mesh sizes
Dx = 0.002, and 0.003 are almost identical implies that
convergence with grid refinement was achieved for these
mesh spacings.

The Mullins–Sekerka linear stability analysis leads to
the expression for growth rate for small perturbations as
a function of the disturbance wavelength as given in Eq.
(27). The function is plotted in Fig. 5 for the case of isotro-
pic surface tension as well as for anisotropic surface tension
with anisotropy strength e = 0.007. The numerical results
are presented in Table 2 for use as benchmarks.
The growth rate values were determined by recording the
amplitude of the perturbation with time and fitting an
exponential curve to determine the growth rate, i.e. by
expressing d = A � exp(B + C), where A, B and C are
parameters to be determined. The amplitude growth rate
v ¼ _d=d then obtained from the parameter B.

The results for the stability spectrum for the isotropic as
well as anisotropic cases are shown in Fig. 5 where the lines
correspond to the amplification rate given by theory and
the symbols are the computed results. The computed
amplification rates are in excellent agreement with theory
over the entire range of wavenumbers studied.

Calculations of the interfacial instability were then car-
ried into the nonlinear regime. For the conditions of the
study, the planar interface is expected to transition to a cel-
lular morphology as the instability of the solidification
front continues to develop. In order to observe this transi-
tion, case 1 of Table 2 is run for long times keeping all
other parameters unchanged. The small perturbation then
grows into the cellular shape shown in Fig. 6a. Fig. 6b
shows the concentration field around the cell, and Fig. 6c
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Fig. 5. The nondimensional growth rate plotted against the dimensionless
wave numbers, for cases with and without anisotropy (e) of interfacial
tension.
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shows the concentration profile along the section A–A
illustrated in Fig. 6b. Fig. 6d shows the concentration pro-
file along the section B–B illustrated in Fig. 6b. As illus-
trated by Fig. 6, in the present sharp interface technique,
the species composition changes abruptly across the inter-
face, and the microsegregation of solute into the liquid
phase is captured without any smearing at the solid–liquid
interface. Furthermore, consistent with theory [22,23], the
cellular shape selected in the present case achieves a final
quasi-steady shape that occupies roughly half the lateral
extent of the domain of growth. The cell spacing in this
case is constrained by the boundary conditions applied
on the sides of the domain (i.e. at y = 0 and y = Y, both
of which are symmetry boundaries). To determine whether
the final cell width is robust or whether it is dictated by the
lateral extent and boundary conditions of the computa-
tional domain a further investigation was carried out by
keeping all the parameters used in Fig. 6 the same, except
that the lateral extent of the domain was increased. The
height OY of the computational domain in this case is such
that three wavelengths of the perturbation are accommo-
dated. The results (Fig. 7a) show that the perturbation ini-
tially grows such that the four tips amplify at the same rate,
while later in the evolution numerical noise leads to the
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Fig. 8. Cellular growth of the Al–Cu alloy. Cell growth begins from botto
(a) beginning stages; (b) intermediates stage showing spread of the cellular struc
structures to the right; and (d) later stage showing wavelength readjustment by
overall interface now is nearly planar.
selection of two of the tips into full-grown cells while the
other tips atrophy. The width of the final cells observed
match that of the cell shown in Fig. 6 indicating that the
selected spacing is robust for the imposed growth condi-
tions and material parameters.

3.2. Material 2: Al–Cu alloy

As a second material, an Al–Cu alloy was used to inves-
tigate the cellular growth in directional solidification. The
system of equations solved is the same as for the SCN–ace-
tone material above. The difference between the two sys-
tems lies in the non-dimensional parameters U and W.
For the Al–Cu parameters listed in Table 1 [24] yields
U = 4.2576 � 10�3 and W = 1.16875 � 10�3. The previ-
ously computed SCN–acetone cases, however, used values
of U = 3.9769 � 10�4 and W = 9.375 � 10�2. Thus, in the
present case the values of the non-dimensional parameters
U and W are, respectively, higher and lower than that of the
SCN–acetone system. This implies that the driving force
for the instability is higher and the surface tension is lower
in the present case when compared to the previous one. It is
expected that the observed features of the instability will be
finer in the present case.
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m left of the domain and the cells grow to occupy the whole domain
ture to occupy space; (c) intermediate stage showing growth of the cellular
instabilities of the original cell, cell–cell competition and tip-splitting. The
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The computational domain adopted is as illustrated in
Fig. 1. The cases in this section do not include a particle
in the melt ahead of the front. The domain sizes are speci-
fied as the following: OY = 4, OL = 40 with the fine mesh
region OF = 20. The mesh size is Dx = 0.005 and is selected
based on the grid refinement studies presented earlier. The
parameters used for the Al–Cu alloy directional solidifica-
tion are given in Table 1. The initial half wavelength of a
sinusoidal perturbation is given at the bottom left corner.
The results are presented in Fig. 8 (notice that only results
of fine mesh domain is shown in this plot). The perturbation
develops at the bottom left into a cellular protuberance. The
cell then keeps splitting to form new cells to occupy space
when it grows toward the right. After the cells reach the
upper wall, all the cells grow to the right, and in the end,
the overall interface tends to become flat again. Thus, as
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expected, the present case is much more unstable than the
previous case using the SCN–acetone alloy. The mecha-
nisms for wavelength adjustment, namely tip-splitting of
cells, interfacial instability of the sides of cells to generate
sidearms [25] that mature into full cells as they grow and
the competition between cells, are all observed in Fig. 8.
3.3. Effect of a ceramic particle on front propagation

The Al–Cu alloy is used to study the interaction of a
directionally solidifying front with an embedded ceramic
particle. The material properties and parameters, such as
the directional solidification (pull) velocity and tempera-
ture gradient employed in the simulations are given in
Table 1. The computational domain is as shown in
Fig. 1. A fine mesh is adopted in region OF and the mesh
is linearly stretched in region FL. Figs. 9–13 show the sim-
ulation results of the interactions of particles with develop-
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instability.



-0.96-0.3

-0.5 -0.7 -0.8

-0.9

-0.1 

-0.96 -0.8 -0.9-0.7

-0. 6-0.4-0.2-0.1

-0.96 -0.9-0.8-0.7-0.6

-0.96 -0.9-0.8-0.6

-0.5 -0.3 -0.1 

-0.3-0.1 

-0.4 

41 3
x

2

41 3
x

2

41 3
x

2

41 3
x

2

1 

y 

1 

y 

1 

y 

1 

y 

Fig. 11. The species concentration contours (for a low growth rate
wavenumber for the initial perturbation) shown at different times for the
directional solidification process in the presence of a ceramic particle (kP/
kL = 0.01). The interface shape and non-dimensional species concentra-
tion are shown at four different instants during the development of the
instability.

-0.96-0.3 

-0.5 -0.7 -0.8

-0.9

-0.1 

-0.96-0.8 -0.9-0.7

-0.6-0.4-0.1 

-0.96-0.9-0.8-0.7-0.6

-0.96-0.9-0.8-0.6

-0.5 -0.3 -0.1 

-0.4-0.1 

1 

y 

1 

y 

1 

y 

1 

y 

41 3
x

2

41 3
x

2

41 3
x

2

41 3
x

2

Fig. 12. The species concentration contours (for a front approaching a
particle asymmetrically) shown at different times for the directional
solidification process in the presence of a ceramic particle (kP/kL = 0.01).
The interface shape and non-dimensional species concentration are shown
at four different instants during the development of the instability.

Y. Yang et al. / International Journal of Heat and Mass Transfer 51 (2008) 155–168 165
ing cells. In these simulations the fine mesh sub-domain is
2 � 1.5 units and a 500 � 375 uniform mesh (Dx = Dy =
0.004) is employed; the overall domain is 4 � 1.5 units
using a (560 � 375) mesh. Fig. 9 shows the evolution of
the solidification front to form a steadily growing cell when
interacting with a particle placed ahead of it. The particle
diameter is 0.25 dimensionless units, so that 50 mesh points
lie within the particle. The particle is therefore well resolved
by the mesh. Because of the initial perturbation, Fig. 9a
shows that the interface becomes unstable, a cell starts to
grow out of the perturbed area; Fig. 9b shows that the cell
continues to grow until it reaches the particle. Fig. 9c
shows the particle obstructs the solutal diffusion in front
of the cell. This leads to accumulation of the solute between
the particle and the growing cell, resulting in a high species
concentration in the gap. The driving force for solidifica-
tion which is the species concentration gradient progres-
sively decreases beneath the particle. The cell starts to
grow around the particle following the direction of the
highest solutal gradients, i.e. the imposed thermal gradient
is overridden. Finally, Fig. 9d shows the cell grows com-
pletely around the particle and a particle engulfment
results.

Yang et al. [4] showed that for pure material, when a
growing dendrite interacts with solid particles, the particle
melt thermal conductivity ratio kP/kL is crucial in deter-
mining the behavior of the dendrite. When kP/kL < 1, as
the growing dendrite grows towards the particle, there is
a layer of warm liquid that forms between the particle
and the dendrite. Therefore the dendrite tip is slowed down
and the dendrite tip radius is enlarged as the particle is
approached. In the impure material case, since the interface
velocity is determined mainly by the species concentration
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gradient in front of the moving solidification front, the
effect of different particle melt thermal conductivity ratio
is not a priori obvious. Therefore, simulations of the solid-
ification front approach to the particle were carried out by
varying the particle thermal conductivity. It is observed
that the behaviors of the growing cells are very much the
same for different particle melt thermal conductivity ratios.
Fig. 10 shows that for a particle melt thermal conductivity
ratio kP/kL = 1, the evolution of the profile of the growing
cell. Practically no differences are seen between Figs. 9 and
10. In each case, as the cellular structure goes around the
particle liquid pools remain between the particle and the
front. The cells all grow around the particle and finally
engulf it. For a case of thermal conductivity ratio of kP/
kL = 10, the simulation results essentially reproduce the
scenario described above.

Fig. 11 shows the evolution of the growing cell when
interacting with a solid particle in front it. The only differ-
ence between this case and the case shown in Fig. 9 is that
the perturbation wave number used in this case corre-
sponds to a low growth rate perturbation wave number,
while the cases shown in Figs. 9 and 10 use a perturbation
wave number corresponding to high growth rate perturba-
tion wave-number [14]. The result shown in Fig. 11 indi-
cates that the presence of the particle can have a
significant impact on the stability of the interface. Due to
the low growth rate, the solidification front initially grows
as a slightly perturbed interface until it reaches the vicinity
of the particle region. As the particle is approached the
obstruction of the species diffusion by the particle is felt
by the solidification front, and the growth of solidification
front right beneath the particle is suppressed. The sides far
from the particle continue to grow and the cellular growth
of the interface away from the particle is actually enhanced.
The final profile takes a shape as shown in Fig. 11d before
the growing interface approaches the boundary of the fine
mesh region.

Fig. 12 shows that when the particle is placed in front of
the interface asymmetrically with respect to the growing
cell, the cell grows around the particle along one side (with
the same high growth perturbation wave-number here in
this case as in the case shown in Fig. 9). The growth of
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the side that is directly under the particle is suppressed and
the cell grows towards the other side where the species dif-
fusion path is not blocked as much. Thus, the presence of a
particle has the overall effect of suppressing instability
growth in its vicinity in a binary alloy undergoing direc-
tional solidification.

Fig. 13 shows the interactions between fully developed
cells and the solid particle. In the simulation shown in
Fig. 13 the initial perturbation was localized at the center
of the solid–liquid interface. Fig. 13a shows that the initial
perturbation has grown into cells and the cells spread from
the center of the domain (where the original perturbation
was placed) to the sides of the domain in trying to occupy
more of the available space. Fig. 13b depicts the stage at
which the cells have made contact with the particle. The
tips of the cells that reached the particle stop progressing
due to the formation of a layer of solute trapped between
the cells and the particle, while the other cell tips continue
to grow around the particle. Fig. 13c and d shows that the
particle is finally engulfed by the cells. The present sharp
interface method captures not only the interaction of the
cells with the particle but also the evolution of the myriad
pockets of solute that are left behind and retained in the
mushy region as the cellular front grows.

In all of the above cases the particle was maintained sta-
tionary while the interface progressed around it. For the
computed cases the gap between the cells and the particle
are significant enough that interaction between the front
and the particle that may lead to particle pushing effects
are not likely, since the particle pushing mechanism starts
to act only at a much smaller length scale. In all cases it
can be surmised that the particle will either be engulfed
by the interface or entrapped between side-arms. A large
part of the literature on particle–front interactions has
focused on the pushing to engulfment transition and the
determination of the critical velocity for this transition.
These studies are mainly concerned with stable planar
interfaces approaching particles. In the present study, for
the unstable fronts, whether dendritic or cellular, it appears
that the particle will be engulfed or entrapped by the den-
dritic sidebranches and cellular structures. Therefore, con-
clusions drawn from planar front–particle interaction
studies do not apply in the present situation.

4. Conclusion

A sharp interface level-set based numerical method is
applied to simulate the directional solidification of binary
alloys in the presence of the particle. The transport of sol-
ute and heat are computed. The directional solidification
calculations are first validated against the Mullins–Sekerka
stability theory and the stability spectrum is reproduced by
the computations. The interaction of the cellular interface
with a ceramic particle in the melt is then computed. It is
shown that, in contrast to the case of a pure material, the
ratio of thermal conductivity of the particle to the melt
plays no role in determining the front morphology and
the result of the particle–front interaction. The diffusion
of species controls the evolution of the phase front around
the particle. The particle appears to suppress the instability
of the front in its vicinity. This is because of the hindrance
that it presents to solute diffusion. In each of the computed
cases the front avoids the particle and travels around it in
the direction of the steepest solute gradient (i.e. indepen-
dent of the thermal gradient). There is always a significant
thickness of liquid present between the front and the parti-
cle as the front engulfs the particle. Therefore, it is difficult
to envision a pushing-type interaction between the front
and the particle in binary alloy directional solidification.
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